Spatial Warping of DWI Data Using Sparse Representation

نویسندگان

  • Pew-Thian Yap
  • Dinggang Shen
چکیده

Registration of DWI data, unlike scalar image data, is complicated by the need of reorientation algorithms for keeping the orientation architecture of each voxel aligned with the rest of the image. This paper presents an algorithm for effective and efficient warping and reconstruction of diffusion-weighted imaging (DWI) signals for the purpose of spatial transformation. The key idea is to decompose the DWI signal profile, a function defined on a unit sphere, into a series of weighted fiber basis functions (FBFs), reorient these FBFs independently based on the local affine transformation, and then recompose the reoriented FBFs to obtain the final transformed DWI signal profile. We enforce a sparsity constraint on the weights of the FBFs during the decomposition to reflect the fact that the DWI signal profile typically gains its information from a limited number of fiber populations. A non-negative constraint is further imposed so that noise-induced negative lobes in the profile can be avoided. The proposed framework also explicitly models the isotropic component of the diffusion signals to avoid undesirable reorientation artifacts in signal reconstruction. In contrast to existing methods, the current algorithm is executed directly in the DWI signal space, thus allowing any diffusion models to be fitted to the data after transformation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)

Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of  the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and  land surface temperature (LST) calculation. However, their spatial resolu...

متن کامل

Fusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation

Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 15 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2012